Package index
-
read_animalta()
- Read AnimalTA data
-
read_bonsai()
- Read centroid tracking data from Bonsai
-
read_deeplabcut()
- Read DeepLabCut data
-
read_idtracker()
- Read idtracker.ai data
-
read_lightningpose()
- Read LightningPose data
-
read_movement()
experimental - Read movement data
-
read_sleap()
- Read SLEAP data
-
read_trackball()
- Read trackball data
-
read_treadmill()
experimental - Read treadmill data
-
read_trex()
- Read TRex Movement Tracking Data
-
check_na_timing()
- Visualize the timing of missing values in the data
-
check_na_gapsize()
- Visualize the occurrence of gap sizes in the data
-
check_confidence()
- Visualize the distribution of confidence values for each keypoint
-
check_pose()
- Analyze the distribution of distances from keypoints to the centroid
-
filter_na_confidence()
- Filter low-confidence values in a dataset
-
filter_na_speed()
- Filter values by speed threshold
-
filter_na_roi()
- Filter coordinates outside a region of interest (ROI)
-
replace_na()
- Replace Missing Values Using Various Methods
-
replace_na_linear()
- Replace Missing Values Using Linear Interpolation
-
replace_na_locf()
- Replace Missing Values Using Last Observation Carried Forward
-
replace_na_spline()
- Replace Missing Values Using Spline Interpolation
-
replace_na_stine()
- Replace Missing Values Using Stineman Interpolation
-
replace_na_value()
- Replace Missing Values with a Constant Value
-
filter_movement()
experimental - Smooth Movement Data
-
filter_lowpass()
- Apply Butterworth Lowpass Filter to Signal
-
filter_highpass()
- Apply Butterworth Highpass Filter to Signal
-
filter_lowpass_fft()
- Apply FFT-based Lowpass Filter to Signal
-
filter_highpass_fft()
- Apply FFT-based Highpass Filter to Signal
-
filter_kalman()
- Kalman Filter for Regular Time Series
-
filter_kalman_irregular()
- Kalman Filter for Irregular Time Series with Optional Resampling
-
filter_rollmean()
experimental - Apply Rolling Mean Filter
-
filter_rollmedian()
experimental - Apply Rolling Median Filter
-
filter_sgolay()
- Apply Savitzky-Golay Filter to Movement Data
Transformations
These functions allow you to make tranformations to your coordinate system, such as translations, rotations or conversion to polar coordinates.
-
transform_to_egocentric()
experimental - Transform coordinates to egocentric reference frame
-
translate_coords()
experimental - Translate coordinates (Cartesian)
-
rotate_coords()
experimental - Rotate coordinates in Cartesian space
-
map_to_cartesian()
- Map from polar to Cartesian coordinates
-
map_to_polar()
- Map from Cartesian to polar coordinates
-
add_centroid()
- Add Centroid to Movement Data
-
calculate_kinematics()
experimental - Calculate kinematics from position data
-
calculate_statistics()
experimental - Calculate summary statistics
-
calculate_derivative()
- Calculate the derivative (dx/dt) Calculate the derivative (dx/dt) with four arguments
-
calculate_direction()
- Calculate direction Calculate direction (angle) from x and y distance using the (two-argument) arc-tangent. Converts to
circular
.
-
calculate_distance()
- Calculate distance (Pythagoras) Calculate distance from an x and y distance, using Pythagoras theorem.
-
calculate_speed()
- Calculate Speed from Position Data
-
calculate_straightness()
- Calculate straightness measures
-
init_metadata()
experimental - Initiate movement metadata
-
get_metadata()
experimental - Get/extract metadata
-
set_uuid()
experimental - Set UUID
-
set_start_datetime()
experimental - Set starting datetime
-
set_framerate()
- Adjust time values to reflect a new framerate
-
set_individual()
- Assign a new individual identifier to all rows in a dataset
-
get_example_data()
- Download example tracking data
-
group_every()
experimental - Group every N observations together
-
align_timeseries()
- Align a time series with a reference series using cross-correlation
-
find_lag()
- Find optimal time lag between two time series using cross-correlation
-
find_peaks()
- Find Peaks in Time Series Data
-
find_troughs()
- Find Troughs in Time Series Data
-
plot_position_timeseries()
- Plot Time Series of Keypoint Position
-
plot_speed_timeseries()
- Plot Time Series of Keypoint Speed
-
classify_by_stability()
- Classify Movement States Based on Stability Analysis
-
classify_by_threshold()
- Classify Values Into Sequences with Minimum Run Length Constraints
-
classify_high_periods()
- Classifies Periods of High Activity in Time Series Using Peaks and Troughs
-
classify_low_periods()
- Classifies Periods of Low Activity in Time Series Using Peaks and Troughs